

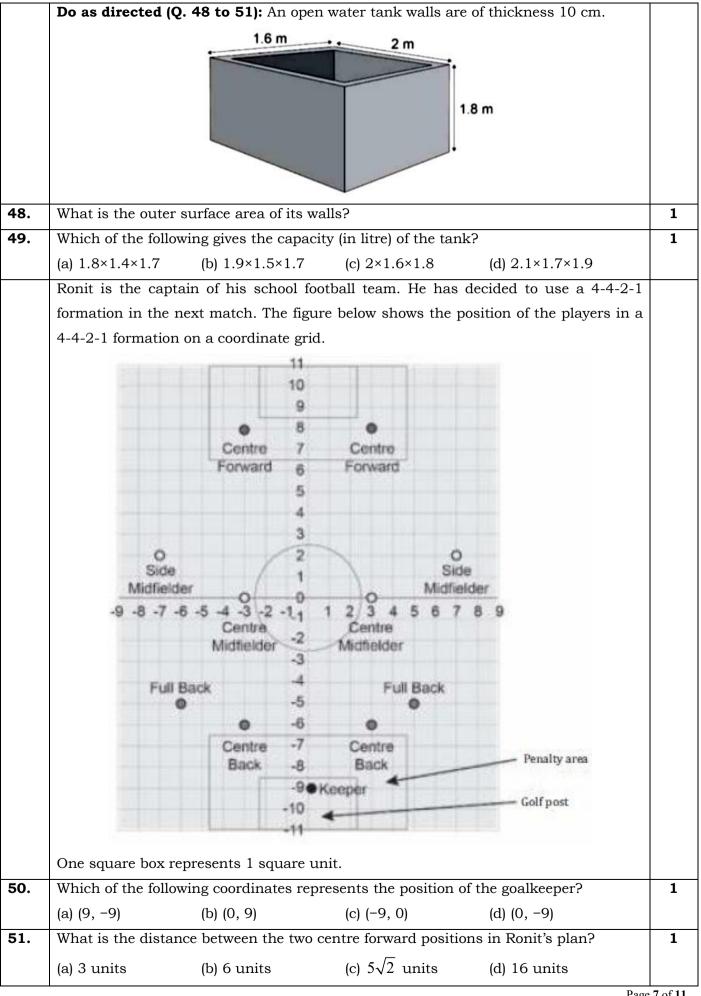
Sar	nple Paper-I (2026-27)	For Office
Class:	XI Mathematics	Use Only
Time:	03:00 Hrs.	
M.M:	80	

Personal Information

Student's Name:		Father's Name:			
City:	Mobile No:	Exam Date:-	1	/2026	
Studying in Class:-	Appearing for class:	Board:			
Present School Name:		Category :			
		·			

Ī	Physics	Chemistry	Mathematics	English	MAT	Total	Remark
	(20)	(15)	(25)	(10)	(10)	(80)	

	Physics (20)	M.M					
	Choose the correct answer. (Q. 1 to 4)						
1.	A lens has a power of +0.5D. It is	1					
	(a) A concave lens of local length 5 m						
	(b) A convex lens of focal length 5 m						
	(c) A convex lens of focal length 2 m						
	(d) A concave lens of focal length 2 m						
2.	To determine the equivalent resistance of a series combination of two resistors R ₁	1					
	and R ₂ , a student arrange the following set up.						
	+ <u>A</u> - + <u>V</u> -						
	Which one of the following statements will be true for this circuit? It gives						
	(a) incorrect reading for current I as well as potential difference V						
	(b) correct reading for current I but incorrect reading for potential difference V						
	(c) correct reading for potential difference V but incorrect reading for current I						
	(d) correct reading for both I and V.						
3.	Which of the following properties of a proton can change while it moves freely in a	1					
	magnetic field?						
	(a) Mass (b) Speed (c) Momentum (d) Kinetic energy						


4.	When white light enters a prism, it gets split into its constituent colours. This is due	1
	to	
	(a) different refractive index for different wavelength of each colour	
	(b) each colours has same velocity in the prism.	
	(c) prism material have high density.	
	(d) Scattering of light	
	Fill in the blank. (Q. 5 to 11)	
5.	The screen on which the image is formed by the lens system of the human eye is	1
	called	
6.	A transparent material bound by two surfaces, of which one or both surfaces are	1
	spherical, forms a	
7.	Two immiscible transparent liquids A and B have 1.2 and 1.5 as their refractive	1
	indices (with respect to air). The refractive index of B with respect to A is	
8.	For a normal eye, the range of vision is from	1
9.	An neutron beam enters a magnetic field at right angles to it as shown in the figure.	1
	Due to magnetic field, neutron beam will deflect	
	→ Magnetic	
	field	
		
	\longrightarrow	
	Neutron beam	
10		-
10.	A horizontal wire carrying a current as shown in figure below between magnetic poles	1
	N and S. The direction of the force on the wire due to the magnet is	
	current	
	N/	
11.	The equivalent resistance between A and B for the circuit shown in the figure is	1
	·	
	$\stackrel{8\Omega}{\longleftarrow}$	
	$\frac{20 \Omega}{}$	
	8 \(\Omega \)	
	$A \leftarrow \begin{array}{c c} 9 \Omega & \longrightarrow B \\ \hline & & & \\ & &$	
	18 Ω	

	Do as directed (Q. 12 to 14)	
12.	Diagram shows the lengthwise section of a current carrying solenoid.	1
	(A) Indicates current entering into the page,	
	(B) Indicates current emerging out of the page.	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Decide which end of the solenoid A or B, will behave as North pole. Also, draw field	
	lines inside the solenoid.	
13.	Draw the ray diagram of image formation by concave mirror when object is placed	1
	between focus and centre of curvature.	
14.	A ray of light travels from medium A to medium B. If the Refractive index of the	1
	medium B relative to medium A is less then 1. Then draw the ray diagram of	
	propagation of light obliquely from medium A to medium B.	
	Question Based on Reason & Assertion. (Q. 15 to 17)	
	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).	
	(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A)	
	(c) Assertion (A) is true but reason (R) is false.	
	(d) Assertion (A) is false but reason (R) is true.	
15.	Assertion (A): Light does not travel in the same direction in all the media.	1
	Reason (R): The speed of light does not change as it enters from one transparent	
	medium to another.	
16.	Assertion (A): Magnetic field interacts with a moving charge only.	1
	Reason (R): Moving charge produces a magnetic field.	
17.	Assertion (A): The scattering of longer wavelengths of light increases as the size of the particles increases.	1
	Reason (R): Large particles scatter lights of all wavelengths equally well. Case Study: (Q. 18 to 20) The heating effect of current is obtained by	
	transformation of electrical energy in heat energy. Just as mechanical energy used to overcome friction is converted into heat, in the same way, electrical energy is converted into heat energy when an electric current flows through a resistance wire. The heat produced in a conductor, when a current flows through it is found to depend directly on (a) strength of current (b) resistance of the conductor (c) time or which the current flows.	
	The mathematical expression is given by H = I ² Rt. The electrical fuse, electrical heater, electric iron, electric geyser etc. all are based on the heating effect of current.	

18.	When the cur	rent is double	d in a heating device	and time is halved,	the heat energy	1
	produced is _	·				
19.	A fuse wire m	elts at 5 A. It	is desired that the fu	ise wire of same ma	terial melt at 10	1
	A. The new ra	dius of the wir	e should be	_•		
20.	When a curr	ent of 0.5 A	passes through a	conductor for 5 m	inutes and the	1
	resistance of o	conductor is 10	Ω , the amount of he	eat produced in joule	e is	
			Chemistry (1	5)		
21.	Which of the f	following is an	example of simple di	splacement-		1
	(a) The electro	lysis of water.				
	(b) The burnir	ng of methane.				
	(c) The reaction	n of a metal w	ith an acid.			
	(d) The reaction	on of two salts	solution to form a pr	ecipitate.		
22.	Which of the f	following turn	phenolphthalein pink	(-		1
	(a) NaOH	(b) <i>HC</i>	$l(aq)$ (c) CH_2	COOH (d) H	20	
23.	While studyin	g the saponifi	cation reaction, wha	t do vou observe w	hen vou mix an	1
			s vegetable oil and 2	J	5	
	breaker-		S	1		
		of mixture has	s become dark brown			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		ng place in the beake			
	1		peaker has become he			
	(d) The outer s	surface of the 1	beaker has become co	old.		
	Case Study: (Q. 24 to 26)				
	(A) The meltin	g point and bo	oiling points of some i	onic compound are	given below-	
		Compound	Melting Point (K)	Boiling Point (K)	\neg	
		NaCl	1074	1686		
		LiCl	887	1600		
		CaCl ₂	1045	1900		
		CaO	2850	3120		
		MgCl ₂	981	1685		
	These compo	und are term	led ionic because th	ney are formed by	the transfer of	
	electrons fron	n a metal to a	non-metal. The elec	etron transfer in su	ch compound is	
	controlled by	the electronic	c configuration of th	e elements involved	. Every element	
	tends to attai	in a completel	ly filled valence shel	l of its nearest nob	le gas or stable	
	octet.					
24.	The electronic	configuration	of magnesium in Mg	Cl ₂ is-		1
	(a) 2, 8, 2	(b) 2, 8	, 1 (c) 2, 8	(d) 2,	7	
25.	The Highest in	nterionic attrac	ction force among the	followings-		1
	(a) CaCl ₂	(b) LiCl	(c) NaC	d) Ca	aO	

	Solution P	Solution Q	Solution R	Solution S
With	No change in	Turns red	No change in	No change in
methyl	colour		colour	colour
orange				
With	No change in	No change in	No change in	Turns pink
phenolpht	colour	colour	colour	
halein				
With re	d No change in	No change in	No change in	Turns litmus
litmus	colour	colour	colour	blue
With blu			No change in	No change in
litmus	colour	red	colour	colour
` ,	d R are acidic salt s			
(b) Both P an	d R are basic salt s	olutions.		
(c) Both P an	d R are amphoteric	salt solutions.		
(d) Both P an	d R are neutral sal	t solutions.		
Fill in the bl	ank. (Q. 27 to 32)			
When sodiun	n hydrogen carbona	ate is added to eth	nanoic acid.	
NaHCO ₃ +	\longrightarrow CH ₃ COONa	$u + H_2O +$		
A chemical c	compound 'X' is us	ed in the soap a	nd glass industry	. It is prepared b
brine. Write i	ts chemical formula	a of X		
$(CH_3)C = C($	$(CH_3) + H_2 \xrightarrow{Ni} (C$	$(CH_3)_2 - CH_3 - CH$	(CH_3)	
is	the role of metal w	ritten on arrow's i	n the given chem	ical reaction.
Write the typ	e of reaction involve	ed in following rea	action	
$Zn \longrightarrow Zn^{+2}$	$+2e^{-}$			
Write the form	mula of 2, 3 dimeth	yl pentane	·	
Name the 3:1	composition of cor	nc. HCl and conc.	HNO ₃ is	·
_	sed on Reason & A	, -	•	
	sertion (A) and re	eason (R) are tr	ue and reason	(R) is the correct
-	of assertion (A).			
	ertion (A) and rea	son (R) are true	but reason (R)	is not the correct
_	of assertion (A)	(D): 6.1		
• •	(A) is true but reason	• •		
	(A) is false but reas		t-1ti	41
): Hydrogen gas is r			in miric acid.
	Nitric acid is a stroi A): Copper sulpha			contains water (
crystallisation		ic crystais are	wet because It	comanis water (
J				
Reason (R):	Water of crystalli	sation is the fix	ed number of r	nolecules of wate

35.	Assertion (A): Mg is less reactive than Na.	1
	Reason (R): Sodium reacts more vigrously with oxygen than magnesium.	
	Mathematics (25)	
	Choose the correct answer. (Q. 36 to 40)	
36.	The roots of the quadratic equation $x + \frac{1}{x} = 3, x \neq 0$, are	1
	(a) $3+\sqrt{5}, 3-\sqrt{5}$ (b) $2+\sqrt{5}, 2-\sqrt{5}$ (c) $\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}$ (d) $\frac{3+\sqrt{3}}{2}, \frac{3-\sqrt{3}}{2}$	
37.	One equation of a pair of dependent linear equations is $-5x+7y=2$. The second	1
	equation can be	
	(a) $10x + 14y + 4 = 0$ (b) $-10x - 14y + 4 = 0$	
	(c) $-10x + 14y + 4 = 0$ (d) $10x - 14y = -4$	
38.	If $\sec A + \tan A = x$, then $\tan A =$	1
	(a) $\frac{x^2 - 1}{x}$ (b) $\frac{x^2 - 1}{2x}$ (c) $\frac{x^2 + 1}{x}$ (d) $\frac{x^2 + 1}{2x}$	
39.	If the shadow of a pole h metres high is $\sqrt{3}h$ metres long, then the angle of elevation	1
	of the sun is	
	(a) 30° (b) 45° (c) 60° (d) 90°	
40.	The largest number which divides 70 and 125, leaving remainders 5 and 8,	1
	respectively, is	
	(a) 13 (b) 65 (c) 875 (d) 1750	
	Fill in the blank. (Q. 41 to 47)	
41.	If a and b are two irrational numbers, then an irrational number always lies between them.	1
42.	If α and β are the zeros of the quadratic polynomial $ax^2 + bx + c$, then the quadratic	1
	polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is	
43.	In a $\triangle ABC$, D and E are the points on the sides AB and AC respectively such that	1
	$DE \parallel BC$. If AD = 6cm, DB = 9 cm and AE = 8cm, then AC =	
44.	From an external point P, tangents PA and PB are drawn to a circle with centre O. If	1
	$\angle PAB = 50^{\circ}$, then $\angle AOB = $	
45.	The wheel of a motorcycle is of radius 35 cm. The number of revolutions per minute	1
	that the wheel must make to keep a speed of 66km/h is	
46.	The mean and median of a distribution are 14 and 15 respectively. The value of mode	1
	is	
47.	If the roots of the quadratic equation $px^2 + 4x + 1 = 0$ are real, then p will be	1
	<u> </u>	

	Subjective Type Questions (Q. 52 to 56)	
52.	A fox and an eagle lived at the top of a cliff of height 6 m, whose base was at a	1
	distance of 10 m from a point A on the ground. The fox descends the cliff and went	
	straight to the point A. The eagle flew vertically up to a height x metres and then flew	
	in a straight line to a point A, the distance traveled by each being the same. Find the	
	value of x .	
53.	Two numbers are in the ratio 5: 6. If 8 is subtracted from each of the numbers, the	1
	ratio becomes 4:5. Find the numbers.	
54.	Determine an acute angle θ , if $\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$	1
55.	If the diameter of the cross-section of a wire is decreased by 5%, how much percent	1
	will the length be increased so that the volume remains the same?	
56.	In Fig, O is the centre of the circle with radius 5 cm, given $AB \mid \mid$ CD and AB = 6cm. Find OP.	1
	Case Study (Q. 57 to 60) Your friend Veer wants to participate in a 200m race. He can currently run that distance in 51 seconds and with each day of practice it takes him 2 seconds less. He wants to do in 31 seconds.	
57.	Based on above condition solve the following questions. What is the minimum number of days he needs to practice till his goal is achieved? The value of v. for which 2v. v+ 10, 3v + 2 are three consecutive terms of an AP.	1
58.	The value of x, for which $2x$, $x+10$, $3x+2$ are three consecutive terms of an AP.	1
59.	Check whether 25 is the term in AP 1, 5, 9 or not.	1
60.	If nth term of an AP is given by $a_n = 2n + 3$ then find the common difference of an AP.	1

English (10)

Read the passage carefully and answer the multiple choice questions that follow.

In the early 20th century, the concept of "planned obsolescence" began to influence the world of industrial design and manufacturing. Coined during the Great Depression, this term referred to a deliberate strategy where companies designed products with limited useful life, ensuring that they would need to be replaced within a certain period. This approach was first widely implemented in the **automotive industry**, where car manufacturers began changing models annually to encourage customers to upgrade more frequently—even if their existing vehicles were fully functional.

Over time, this strategy was adopted by a wide range of industries, from **consumer electronics** to **fashion**, fueling a culture of constant consumption. While this practice significantly boosted economic growth and innovation, it also introduced a troubling consequence: **an unsustainable cycle of production and disposal**. Modern devices such as smartphones, laptops, and home appliances are often difficult or expensive to repair, nudging consumers toward buying new rather than fixing the old.

Environmental experts argue that planned obsolescence is a major contributor to the **growing crisis of electronic waste**, or e-waste. According to recent studies, millions of tonnes of electronics are discarded annually, with a large portion ending up in landfills or being improperly recycled. This leads to the release of toxic substances such as mercury, lead, and cadmium, which pose serious risks to both human health and the environment.

The ethics of planned obsolescence have come under increasing scrutiny. Consumer advocacy groups and environmental organizations have criticized companies for prioritizing profits over sustainability and long-term customer interests. In response, several governments—particularly in Europe—are introducing "Right to Repair" laws. These laws aim to empower consumers by ensuring access to affordable spare parts, repair manuals, and services, thereby extending the lifespan of products.

As the global community becomes more aware of climate change and resource scarcity, the pressure is mounting on corporations to adopt **circular economy** models. These models emphasize product longevity, reusability, and recycling as core design principles. Although implementing such systems presents challenges, they may ultimately lead to more responsible and sustainable production in the long run.

61. Assertion (A): Planned obsolescence can be seen as an economic strategy that increases market demand.

Reason (R): Products made to last longer often result in reduced sales and stagnant revenue growth.

- (a) Both A and R are true, and R is the correct explanation of A
- (b) Both A and R are true, but R is not the correct explanation of A
- (c) A is true, but R is false
- (d) A is false, but R is true

1

62.	True/False with Inference	1
	Statement:	
	The passage implies that planned obsolescence is no longer a common practice due	
	to environmental regulations.	
	(a) True, because governments have banned it completely	
	(b) True, because companies voluntarily adopted sustainability	
	(c) False, because planned obsolescence is still widely practiced despite emerging	
	regulations	
	(d) False, because planned obsolescence has never existed in modern manufacturing	
63.	Choose the most appropriate analogy based on the information in the passage:	1
	Planned obsolescence : E-waste ::	
	(a) Overfishing : Marine population recovery	
	(b) Fast fashion : Textile innovation	
	(c) Disposable plastics : Environmental degradation	
	(d) Renewable energy : Pollution	
64.	What can be inferred about the "Right to Repair" laws based on the passage?	1
	(a) They are intended to punish manufacturers through heavy taxation	
	(b) They aim to shift consumer behavior by banning low-quality imports	
	(c) They seek to empower consumers and reduce unnecessary product disposal	
	(d) They focus solely on recycling old electronic gadgets into new ones	
	Fill in the blanks. (Q. 65 to 67)	
65.	Neither the captain nor the players aware of the penalty	1
	imposed. (was / were / have been)	
66.	If she harder, she could have qualified for the nationals.	1
	(practised / had practised / practises)	
67.	Seldom such generosity in today's world. (we see / do we see /	1
	we had seen)	
68.	You are Ananya/Ankit, a student of Class 12, DAV Public School, Chandigarh. You	3
	believe that India's education system needs urgent reforms to focus on practical	
	learning rather than rote memorization. Write an article in minimum 100-150 words.	
	MAT (10)	
	Solve the question based on general intelligence. (Q. 69 to 78)	
69.	X is the son of Y. Y is the daughter of Z. How is X related to Z?	1
	(a) Father (b) Son (c) Grandson (d) Brother	
70.	M is the mother of N. N is the brother of O. P is the father of M. How is P related to	1
	O?	
	(a) Grandfather (b) Uncle (c) Father (d) Brother	
71.	If CAR is written as DBS, then how is BUS written?	1
	(a) CVT (b) BVT (c) CWT (d) CUT	

72.	If TEA = 26, then w	hat is MILK?			1
	(a) 48	(b) 45	(c) 50	(d) 51	
73.	A man walks 12 m	East, then 5 m Nor	th, then 12 m West.	How far is he from the	1
	starting point?				
	(a) 5 m North	(b) 12 m North	(c) 24 m North	(d) Back to start	
74.	A person starts fa	acing South. He turn	ns left, then left ag	ain, then right. Which	1
	direction is he facin	ng now?			
	(a) North	(b) South	(c) East (d) We	est	
75.	4, 9, 16, 25,				1
	(a) 32	(b) 34	(c) 36	(d) 49	
76.	1, 1, 2, 3, 5, 8,				1
	(a) 11	(b) 12	(c) 13	(d) 15	
77.	Choose the alterna	ative which is closel	y resembles the mir	ror image of the given	1
	combination.				
	1965 I NDOPAK				
		NIKAP (2) 18			
		DOPAK (4) 16			
	(a) 1	(b) 2	(c) 3	(d) 4	
78.	The more you take	from me, the more I le	eave behind. What ar	n I?	1
	(a) Time	(b) Steps	(c) Memories	(d) Shadows	
